Survival function estimation when lifetime and censoring time are dependent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of the Survival Function for Negatively Dependent Random Variables

Let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nXn?F(x)=P[X>x]. The empirical survival function ()nFx based on 12,,...,nXXX is proposed as an estimator for ()nFx. Strong consistency and point wise as well as uniform of ()nFx are discussed

متن کامل

estimation of the survival function for negatively dependent random variables

let be a stationary sequence of pair wise negative quadrant dependent random variables with survival function {,1}nxn?f(x)=p[x>x]. the empirical survival function ()nfx based on 12,,...,nxxx is proposed as an estimator for ()nfx. strong consistency and point wise as well as uniform of ()nfx are discussed

متن کامل

Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring.

Given a predictive marker and a time-to-event response variable, the proportion of concordant pairs in a data set is called concordance index. A specifically useful marker is the risk predicted by a survival regression model. This article extends the existing methodology for applications where the length of the follow-up period depends on the predictor variables. A class of inverse probability ...

متن کامل

Nonparametric adaptive time-dependent multivariate function estimation

We consider the nonparametric estimation problem of time-dependent multivariate functions observed in a presence of additive cylindrical Gaussian white noise of a small intensity. We derive minimax lower bounds for the L-risk in the proposed spatio-temporal model as the intensity goes to zero, when the underlying unknown response function is assumed to belong to a ball of appropriately construc...

متن کامل

Risk-efficient estimation of the mean exponential survival time under random censoring.

The paper proposes a sequential estimator theta of the parameter theta of an exponential distribution when the data are censored. It is shown that theta is asymptotically risk efficient when the loss is measured by the squared error of estimation of theta plus a linear function of the number of observations and that theta is asymptotically normal as the cost per observation goes to zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2003

ISSN: 0047-259X

DOI: 10.1016/s0047-259x(03)00027-7